Transport Phenomena - Delft University of Technology

Sorted by YearSorted by First Author

The Effect of Surfactants on Vertical Air/Water Flow for Prevention of Liquid Loading

The Effect of Surfactants on Vertical Air/Water Flow for Prevention of Liquid Loading, A. T. van Nimwegen, L. M. Portela, and R. A. W. M. Henkes. Spe Journal 2016, 21  (2), 488–500.

Download

(unavailable)

Abstract

From field experience in the gas industry, it is known that injecting surfactants at the bottom of a gas well can prevent liquid loading. To better understand how the selection of the surfactant influences the deliquification performance, laboratory experiments of air/water flow at atmospheric conditions were performed, in which two different surfactants (a pure surfactant, sodium dodecyl sulfate, and a commercial surfactant blend) were added to the water. In the experiments, a high-speed camera was used to visualize the flow, and pressure-gradient measurements were performed. Both surfactants increase the pressure gradient at high gas-flow rates and decrease the pressure gradient at low gas-flow rates. The minimum in the pressure gradient moves to lower gas-flow rates with increasing surfactant concentration. This is related to the transition between annular flow and churn flow, which is shifted to lower gas-flow rates because of the formation of an almost stagnant foam substrate at the wall of the pipe. At high surfactant concentration, it appears that the churn flow regime is no longer present at all and that there is a direct transition from annular flow to slug flow. The results also show that the critical micelle concentration, the equilibrium surface tension, the dynamic surface tension, and the surface elasticity are poor predictors of the effect of the surfactant on the flow.

BibTeX

@article{ ISI:000385254100014,
Author = {van Nimwegen, A. T. and Portela, L. M. and Henkes, R. A. W. M.},
Title = {The Effect of Surfactants on Vertical Air/Water Flow for Prevention of Liquid Loading},
Journal = {Spe Journal},
Year = {2016},
Volume = {21},
Number = {2},
Pages = {488-500},
Month = {},
Note = {},
Organization = {SPE},
Abstract = {From field experience in the gas industry, it is known that injecting surfactants at the bottom of a gas well can prevent liquid loading. To better understand how the selection of the surfactant influences the deliquification performance, laboratory experiments of air/water flow at atmospheric conditions were performed, in which two different surfactants (a pure surfactant, sodium dodecyl sulfate, and a commercial surfactant blend) were added to the water. In the experiments, a high-speed camera was used to visualize the flow, and pressure-gradient measurements were performed. Both surfactants increase the pressure gradient at high gas-flow rates and decrease the pressure gradient at low gas-flow rates. The minimum in the pressure gradient moves to lower gas-flow rates with increasing surfactant concentration. This is related to the transition between annular flow and churn flow, which is shifted to lower gas-flow rates because of the formation of an almost stagnant foam substrate at the wall of the pipe. At high surfactant concentration, it appears that the churn flow regime is no longer present at all and that there is a direct transition from annular flow to slug flow. The results also show that the critical micelle concentration, the equilibrium surface tension, the dynamic surface tension, and the surface elasticity are poor predictors of the effect of the surfactant on the flow.},
ISSN = {1086-055X},
EISSN = {1930-0220},
Unique-ID = {ISI:000385254100014},
}

Generated by bib2html.pl (written by Patrick Riley ) on Fri Jul 28, 2017 13:53:00


Last modified: July 28 2017. © Delft University of Technology - TP group 2012